\(\int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx\) [611]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 36, antiderivative size = 156 \[ \int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=-\frac {B \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {B \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}-\frac {B \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {B \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d} \]

[Out]

2/3*B/d/cot(d*x+c)^(3/2)+1/2*B*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1/2*B*arctan(1+2^(1/2)*cot(d*x+c)
^(1/2))/d*2^(1/2)-1/4*B*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1/4*B*ln(1+cot(d*x+c)+2^(1/2)*cot(
d*x+c)^(1/2))/d*2^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {21, 3555, 3557, 335, 217, 1179, 642, 1176, 631, 210} \[ \int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=-\frac {B \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {B \arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d}+\frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}-\frac {B \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {B \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d} \]

[In]

Int[(a*B + b*B*Tan[c + d*x])/(Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])),x]

[Out]

-((B*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d)) + (B*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2
]*d) + (2*B)/(3*d*Cot[c + d*x]^(3/2)) - (B*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d) +
 (B*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3555

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = B \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}-B \int \frac {1}{\sqrt {\cot (c+d x)}} \, dx \\ & = \frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {B \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1+x^2\right )} \, dx,x,\cot (c+d x)\right )}{d} \\ & = \frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {(2 B) \text {Subst}\left (\int \frac {1}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d} \\ & = \frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {B \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}+\frac {B \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d} \\ & = \frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {B \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 d}+\frac {B \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 d}-\frac {B \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} d}-\frac {B \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} d} \\ & = \frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}-\frac {B \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {B \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {B \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {B \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d} \\ & = -\frac {B \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {B \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 B}{3 d \cot ^{\frac {3}{2}}(c+d x)}-\frac {B \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {B \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.53 \[ \int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=-\frac {B \left (-2+3 \arctan \left (\sqrt [4]{-\cot ^2(c+d x)}\right ) \left (-\cot ^2(c+d x)\right )^{3/4}+3 \text {arctanh}\left (\sqrt [4]{-\cot ^2(c+d x)}\right ) \left (-\cot ^2(c+d x)\right )^{3/4}\right )}{3 d \cot ^{\frac {3}{2}}(c+d x)} \]

[In]

Integrate[(a*B + b*B*Tan[c + d*x])/(Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])),x]

[Out]

-1/3*(B*(-2 + 3*ArcTan[(-Cot[c + d*x]^2)^(1/4)]*(-Cot[c + d*x]^2)^(3/4) + 3*ArcTanh[(-Cot[c + d*x]^2)^(1/4)]*(
-Cot[c + d*x]^2)^(3/4)))/(d*Cot[c + d*x]^(3/2))

Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.65

method result size
default \(\frac {B \left (\frac {2}{3 \cot \left (d x +c \right )^{\frac {3}{2}}}+\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(102\)

[In]

int((B*a+b*B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

B/d*(2/3/cot(d*x+c)^(3/2)+1/4*2^(1/2)*(ln((1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)-2^(1/2)*cot(d*
x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 503, normalized size of antiderivative = 3.22 \[ \int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=-\frac {3 \, {\left (d \cos \left (2 \, d x + 2 \, c\right ) + d\right )} \left (-\frac {B^{4}}{d^{4}}\right )^{\frac {1}{4}} \log \left (\frac {B^{3} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) + {\left (d^{3} \cos \left (2 \, d x + 2 \, c\right ) + d^{3}\right )} \left (-\frac {B^{4}}{d^{4}}\right )^{\frac {3}{4}}}{\cos \left (2 \, d x + 2 \, c\right ) + 1}\right ) - 3 \, {\left (d \cos \left (2 \, d x + 2 \, c\right ) + d\right )} \left (-\frac {B^{4}}{d^{4}}\right )^{\frac {1}{4}} \log \left (\frac {B^{3} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) - {\left (d^{3} \cos \left (2 \, d x + 2 \, c\right ) + d^{3}\right )} \left (-\frac {B^{4}}{d^{4}}\right )^{\frac {3}{4}}}{\cos \left (2 \, d x + 2 \, c\right ) + 1}\right ) + 3 \, {\left (i \, d \cos \left (2 \, d x + 2 \, c\right ) + i \, d\right )} \left (-\frac {B^{4}}{d^{4}}\right )^{\frac {1}{4}} \log \left (\frac {B^{3} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) - {\left (i \, d^{3} \cos \left (2 \, d x + 2 \, c\right ) + i \, d^{3}\right )} \left (-\frac {B^{4}}{d^{4}}\right )^{\frac {3}{4}}}{\cos \left (2 \, d x + 2 \, c\right ) + 1}\right ) + 3 \, {\left (-i \, d \cos \left (2 \, d x + 2 \, c\right ) - i \, d\right )} \left (-\frac {B^{4}}{d^{4}}\right )^{\frac {1}{4}} \log \left (\frac {B^{3} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) - {\left (-i \, d^{3} \cos \left (2 \, d x + 2 \, c\right ) - i \, d^{3}\right )} \left (-\frac {B^{4}}{d^{4}}\right )^{\frac {3}{4}}}{\cos \left (2 \, d x + 2 \, c\right ) + 1}\right ) + 4 \, {\left (B \cos \left (2 \, d x + 2 \, c\right ) - B\right )} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}}}{6 \, {\left (d \cos \left (2 \, d x + 2 \, c\right ) + d\right )}} \]

[In]

integrate((B*a+b*B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/6*(3*(d*cos(2*d*x + 2*c) + d)*(-B^4/d^4)^(1/4)*log((B^3*sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c))*sin(2
*d*x + 2*c) + (d^3*cos(2*d*x + 2*c) + d^3)*(-B^4/d^4)^(3/4))/(cos(2*d*x + 2*c) + 1)) - 3*(d*cos(2*d*x + 2*c) +
 d)*(-B^4/d^4)^(1/4)*log((B^3*sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c) - (d^3*cos(2*d*x
+ 2*c) + d^3)*(-B^4/d^4)^(3/4))/(cos(2*d*x + 2*c) + 1)) + 3*(I*d*cos(2*d*x + 2*c) + I*d)*(-B^4/d^4)^(1/4)*log(
(B^3*sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c) - (I*d^3*cos(2*d*x + 2*c) + I*d^3)*(-B^4/d
^4)^(3/4))/(cos(2*d*x + 2*c) + 1)) + 3*(-I*d*cos(2*d*x + 2*c) - I*d)*(-B^4/d^4)^(1/4)*log((B^3*sqrt((cos(2*d*x
 + 2*c) + 1)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c) - (-I*d^3*cos(2*d*x + 2*c) - I*d^3)*(-B^4/d^4)^(3/4))/(cos(2*d
*x + 2*c) + 1)) + 4*(B*cos(2*d*x + 2*c) - B)*sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c)))/(d*cos(2*d*x + 2*c
) + d)

Sympy [F]

\[ \int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=B \int \frac {1}{\cot ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((B*a+b*B*tan(d*x+c))/cot(d*x+c)**(5/2)/(a+b*tan(d*x+c)),x)

[Out]

B*Integral(cot(c + d*x)**(-5/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.82 \[ \int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\frac {6 \, \sqrt {2} B \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 6 \, \sqrt {2} B \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 3 \, \sqrt {2} B \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - 3 \, \sqrt {2} B \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + 8 \, B \tan \left (d x + c\right )^{\frac {3}{2}}}{12 \, d} \]

[In]

integrate((B*a+b*B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/12*(6*sqrt(2)*B*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 6*sqrt(2)*B*arctan(-1/2*sqrt(2)*(sqrt
(2) - 2/sqrt(tan(d*x + c)))) + 3*sqrt(2)*B*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 3*sqrt(2)*B*
log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + 8*B*tan(d*x + c)^(3/2))/d

Giac [F]

\[ \int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\int { \frac {B b \tan \left (d x + c\right ) + B a}{{\left (b \tan \left (d x + c\right ) + a\right )} \cot \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((B*a+b*B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*b*tan(d*x + c) + B*a)/((b*tan(d*x + c) + a)*cot(d*x + c)^(5/2)), x)

Mupad [B] (verification not implemented)

Time = 9.89 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.42 \[ \int \frac {a B+b B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\frac {2\,B}{3\,d\,{\left (\frac {1}{\mathrm {tan}\left (c+d\,x\right )}\right )}^{3/2}}-\frac {{\left (-1\right )}^{1/4}\,B\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {\frac {1}{\mathrm {tan}\left (c+d\,x\right )}}\right )\,1{}\mathrm {i}}{d}-\frac {{\left (-1\right )}^{1/4}\,B\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\frac {1}{\mathrm {tan}\left (c+d\,x\right )}}\right )\,1{}\mathrm {i}}{d} \]

[In]

int((B*a + B*b*tan(c + d*x))/(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))),x)

[Out]

(2*B)/(3*d*(1/tan(c + d*x))^(3/2)) - ((-1)^(1/4)*B*atan((-1)^(1/4)*(1/tan(c + d*x))^(1/2))*1i)/d - ((-1)^(1/4)
*B*atanh((-1)^(1/4)*(1/tan(c + d*x))^(1/2))*1i)/d